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Some Calculations Related to Riemann's 
Prime Number Formula 

By Hans Riesel and Gunnar GolM 

Abstract. The objective of this paper is to study the relation of the complex zeros of the 
Riemann zeta function to the distribution of prime numbers. This relation arises from a 
formula of Riemann, which is studied here by extensive machine calculations. To establish 
the validity of the computations, reasonable upper bounds for the various errors involved 
are deduced. The analysis makes use of a formula, (32), which seems to be quite new. 

Only the first 29 pairs of complex zeros p = - i ia (a < 100), and the primes in the 
interval x < 106 are considered. It turns out that these zeros of i(s) lead to an approxima- 
tion of ir(x), the number of primes <x, that gives the integer part correctly up to about 
x = 1000. 

Introduction. Following Ingham [4, p. 82], we define 

lII+ itI 

(1) li(eu i) = ] eZ dz/z (v # 0 orv = 0 and u < 0) 
-co + iv 

and 

(2) li(x) = lim (I + ) (x >1)- 
I.+O 0 .11+1/ log t 

We then set 

(3) 7ro(X) = 2{7r(x + 0) + ir(x - 0)}. 

In 1859 Riemann [1] published, and in 1895 von Mangoldt [2] proved, the following 
formula: 

(4) 7ro(X) = E A(n)f(x1/n)/n, 
n=1 

where ,4(n) is the M6bius function, and 

(5) f(x) = E 7ro(xl/n)/n = li(x)- > li(xp) + - t2 _ dt - log 2, 

where the sum means lim ,. EIPI <T li(xP), and the p's are the nontrivial zeros 

of the Riemann zeta function: 

(6) ?(s) = n = H (1 - 
n=l v 

In the sum over the p's, each p-term appears a number of times equal to the multi- 

plicity of the zero p. We remark also that, since f(x) = 0 for 1 < x < 2, the sum 
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in (4) is actually finite, and equals 
N 

(7) 7ro(x)= E (n)f(xl)In 
n-1 

for all x < 2- +', because then x' < 2 for all n ? N + 1, and so f(xf'1) 0. We 
shall always choose N, so that 2`?1 > x. 

Taking only the first term li(x) of (5), and introducing it into the "inversion 
formula" (4), Riemann got his famous approximation to iro(x): 

(8) iro(x) R(x) = E g(n) li(x"'1)/n. 
n-1 

The right-hand side of (8) can be transformed into Gram's series (see [5]) 

(9) R (x) =I + z Mn(nIog I)- ( + n!nD(n + 1) 

The Complex Part of Riemann's Formula. Since 

(10) dk Rt (n - k)'nv(n + 1) > 0 for t > 0, 

it is obvious that R(x) cannot describe the more detailed behaviour of lro(x), which 
is certainly not a function with all derivatives > 0. R(x) smoothes the values of 
ro(x) and gives a kind of meanvalue correct smooth approximation to wro(x). The 

lack of a more detailed agreement with 7r0(x) is due to the fact that only the first 
term in (5) was taken into account in (8). Thus we can state that the other terms 
in (5), especially the infinite series, are responsible for the more detailed behaviour 
of 7rw(x). Since the inversion formula (4) is linear in f, it is possible to examine the 
influence, on -r0(x) by each separate term in (5). 

Having made these observations, the following problem might be suggested: 
To study how the value of 1r-(x) is related to each pair of complex conjugate 

zeros p and p of i(s), beginning with the first pair of zeros, p = 2 iL 14.134725i. 
It seemed feasible to the authors to make such a study, at least for reasonably large 
values of x and p, if the necessary numerical calculations were done on a computer. 

Qualitative Results for Large Values of x. If one integrates (1) by parts, one 
obtains 
(It) e+v dz l e ezt1l U+? 

e dz 

-a+ I XZ _ZK - +I -+ + it Z 

and an easy estimate gives 

fu+iv dz 
-e 0 

U + iv 

as u + iv tends to oX along any fixed ray not the positive real axis. Thus, as 1i + iv 
tends to o along such a ray, 

u~iy 
(12) 1i(e U~i) - 

U + IV 
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Thus, for p a root of c(s), 
p log x 

li(xp) = li(ePlogx) - p 
p log X 

where p log x moves along a fixed ray, as x -> on, and this ray is not the positive 
real axis. Hence for a root lying on the critical line, p = 2 + icx, we have 

- fli(xp) + li(x2)} -2 Re li(xp) )- -2 Re Vx el 
(13) (~~~~~~~~~~~~ ? ja) log x 

-2 VIx = logx ., cos (a log x- arg p). 
IPI 'log X 

Thus, for x large, the contribution to 7r0(x) from two complex conjugate zeros 2- i:x 

of c(s) is an oscillating function with an amplitude varying with x as 2V\x/( p I log x) 
and with the consecutive zeros xk,+ and xk connected by the relationship xk+, = 

Xk,* era. These functions are shown for the first 5 pairs of zeros in Fig. 1. The larger 

Jpt becomes, the smaller is the amplitude, and the faster are the oscillations. 
Quantitative Results Obtained by Computations. For x = 2(1)100 computations of 

1 

(14) Tk(X) = - E j(1Pi/X ) + lj(X/)} 
n=1 n 

were carried out for each of the first 29 pairs of zeros of i(s), for which a < 100. 
These values of Tk(x) were used in (7) to give the approximations Rk(x), k = 0, 
1, 2, , 29, of 7r0(x) for x < 2N+1: 

N 

(15) Rk?(X) =E 1.(n)fk(X'/)1n, 

where 

(16) fk(X) = li(x) - 
L li(x) + f (t - )t log t 

The different values of Rk(X) were compared to xr-(x). f0(x) is meant as (16) without 
any term li(xp). 

In the results of these computations, the oscillating character of Tc(x), discussed 
in the preceding section, is easily recognizable. Compare Fig. 1 with Fig. 2, which 
shows Tk(x) for k = 1(1)5. It is also, by comparison with ir0(x), easily seen, to what 
extent just a few pairs of zeros of i(s) exhaust the difference between 7r0(x) and 
Riemann's approximation (8). This comparison is shown in Figs. 3a-d for different 
numbers of zeros and for different intervals. The intervals chosen in Figs. 3c and d 
show the behaviour in the neighbourhood of a comparatively large interval, con- 
taining only one prime in the middle, namely the interval (200, 222) with the prime 
211, and the largest prime-free interval below 1000, which is (888, 906). It turns out 
that the approximations "in mean" are getting better and better when the number 
of zeros taken into account increases, but the new approximations are not much 
superior to Riemann's, unless x is comparatively small. This can be explained by 
the fact that the first pair of zeros has such a large distance from the origin (p, = 

2 + 14.13i), and that the following zeros then follow close to the first. Thus Riemann's 
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FIGURE 3a. Ro(x) and Rl(x) and 
FIGURE 3b. R10(x) and R29(X) for x = 2(1)100 (formula (18)) 
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50 - 1 R(x) ---. E 

48 1 R29(X) -, 

46 

190 1200 210 220 

FIGURE 3c. R o(x) and R 2 9(x) for x = 190. 5(1)230. 5 

approximation that makes no use at all of the zeros, will exhaust the significant 
part of the function quite well, while quite a few zeros are needed in order to describe 
its more subtle properties. If the very large volume of computation needed to get 
at these better approximations is considered, they are indeed very slight improve- 
ments of (8). 

As is natural to expect from (13), the larger zeros of i(s) influence 7r0(x) only 
for the larger values of x. 

The Computations. Combining (5), (7), (14), and (15), we get for all x < 2N+1 

(17) 7ro(x) = Ro(x) + E Tj(x). 

Taking only the first k pairs of zeros of i(s), we get the following approximation 
Rk(x) to 7ro(x): 

Rk(x) = a ( 1i~x1 +an) f (t2 -g - 2) 

(18) n1nn1n I/ 
~ o 

k N 
,(n XiXYn) E E gtn) (li(xPI'n) + 1i(x~"~)) 

Y=1 n=1 n 

Using Gram's series (9) for 

E,(n) I i(x 1/n)In, 
n=1 

we get the following approximation to RJ(x): 

k(x) R 
* 

(X) 

(1og X), ? + (n) (o dt -lo 

(19) n= 1 n!n?(n + 1) 
+E 

n I(t2 - )t log t 
l 

_ =E1 i1 (1i(Xi + nW'/)), 
V=e1 -n = 1 E 
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with the "prolongation error" 

(20) p(x, N) = -E j(n) li(x"l)/n. 
N+1 

Now RC(x) was computed in the following way: 
R0(x) was calculated by using Gram's series (9), and the sum containing the 

integrals was transformed as follows: 

___~n 
0 dt -lg2 

E (L (t2 - tlolog2 n=1 n i/~n (t )t log t ) 

(21) n=I n ,/n (t2 I)t log t ? I n (t2 _ l)t - log 2) 

(with the substitution t e") 

fE (n) du Ag(n)( +' dui ) 

n=1I ? u 
Y_ n Ue_ 

o 
= '~~ (log x)/n U(C - ) __ =21 o 

Introducing the partial fractions expansion of 
co 

(22) - 1) = l/z- 2 + 2z E (z ? 4ir k2) , 
k=1 

the first sum in (21) becomes 

n=1 n J:og x)/n (u 2u k=1 + 2k2d 

[n2 log u + Ya Iarctan u 
n=lIn 2u k=I 7rk 7rk (log x)/n 

(23) t=1nn ( 2 + 
2 ?~g X + 2 log log x- 

2 log n 
(23) n=1 n 2 log x 

+ E -( arc 1 artan - )) 
k=1 irk V k n7rk 

- 1 N~I I~(1i 
l 2 Iog _ , ,u (n) + 

Z-(-ct log log x + 

____ n__ 

+ 2 

Z - a r c taa I 
g (n) log n 

co 
)A(n) 1 log x ( ) E~~-arctan lgx 

2n= n 1 N+1 n k=i 7rk nirk 

The double series 1 1 can be explicitly summed: 

co 
_o __n log _ 

I c 
A(d) log x 

(24) E E (n) arctan logx - 
1 E ar-tan g 

n-, k=l nrk nirk .m.l dlm m rm 

Now, since 

(25) Z,, (d) 0, if m > 2 

= 1, if m = 1, 
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53. . . ' 

ITxx 

880 890 900 910 920 

FIGURE~ 3d. Ro(x) and R29(x) for x = 879 .5(1)920 .5 

(24) reduces to only the one term, corresponding to m =1: 

5 1 ~ ~ ~ ~ lox 1 _ 

(26) E E = -arctan -= - arctan 
n=l k1 i r 2 7r log x 

We thus get 

n-1 n (Ji/n (t )t log t ) 

log 1 lo 2 N ,u(n) log n 1 

2 Zo X (n) + arctan l _ _ E 2 
2 109 n=1 log 2 2 n n 2 
+ (7 (e2u 1-log 2 - -+ log log x+ Z -arctan EiK 

_ _ 12 2k- k k n1 _ 

(27) + E g(n) - arctan log x 
N+1 n k=1 7rk n-rk 

- N I 7r1 iY ,u(n) log n I 
= , ,(n) + -arctan -- - 
2 logx n= 1 T log x 2 n=I n 2 

N An 
2(2 log log x -0.976904) f (n) 

n-I n 

o (n)_ 1 logx 
+ Ef ) E arctan 

N+1 n k-1 7rk n7rk 

Here the integral has been calculated as 

f0 du Lt(C dt _ 
0 0 

-kt 

(28) J u(e -1) t( ) e dt/t 

E ew dw/w = E E1(2k) = 0.0530823, L- _ r aL _ 
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and the sum 1 (1/7rk) arctan (1/7rk) as 

(29) k-17rk 7rk k=1 Ek \rk 37 k 57 rk e 

=-? 2 )-? 4 + 6( )- * * * = 0.1631606 
7r 374 57r 

Letting N tend to c, and using the known sums of the convergent series 

(30) E (n)/n = 0, 
n=I 

(31 ) E ,u(n) logn - 1 

we finally get for the sum with the integrals in (19) 

(32) n4i (f71/n - log - ) 

N ~~~~~~~~7r 
= E gu(n) + - arctan + e(x, N), 2 logx =1 X log x 

where 

E(x, N) -(1 log log x - 0.976904) j + ) l 
(33) A2N- In 2N+1 n 

X ( I) I 
I 

( 
l)'-I(log 

X)2.-l + E - 
Elii )2rn-1 N+i n k=1 7rk m-1 (7kn) (2 r - 1) 

Thus e 0, as N -a co. This simple result of the inversion of the integral term in 
Riemann's formula (4) does not seem to have been noticed earlier. 

Thus R0(x) was calculated using Gram's series and the formula (32) after omission 
of the term E(x, N). 

The integral logarithms for the complex arguments were calculated by using 
the well-known continued fraction expansion of Ei(z), which leads to 

li(e2)= We I 1 _i 
2 21 

_ 

Iz 11 z 11 fz 

In the vicinity of z = 0, however, the power series 

(34) li(e') = y + log (-z) + E -Z 
n=i n!n 

where Iarg (-z)I < 7r, and y is Euler's constant, instead was used. 
Choice of N. By using (32) as an approximation to (27), we are making the 

prolongation error 

E(x, N) = (2 log log x - 0.976904) E )- 2(1 + E (n) log n) 

+ (n) 1 (- 1)1(log X)2-l 

N+1 n k=1 7k .,l (7rkn)2m1(2m - 1)' 

where the MacLaurin's expansions of the arctangent functions converge because 
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of the assumption x < 2+1, which we always make in order to be able to use (7). 
The triple sum in (35) can be reduced to 

(3 6) co~ (-1) M-1(jog x)2 '_(2ni) E A(n) 
m=1 (2 m 1) r n=N?+1 l 

We thus see that the series contains the sums g, = ZcN+1 ,(n)n-k. It is thus ad- 
vantageous to choose such a value of N that the sums g, become comparatively small. 
It also is advantageous to have A ,u(n) = -2 at the same time, since (32) then has 
the order of magnitude only = O((log x)-3) instead of O((log x)-l). This turns out 
to be the case for (among some other small values of N) N = 154. In our computa- 
tions we have chosen this value of N in (14) and (19). To estimate gk = Z155 A 

we calculated gk as 
154 

(37) 9k = 1/(k) - (n)n-k for k = 2(1)9, 

using floating point, double precision (84 + 12 bits) arithmetic. For k ? 10 we 
calculated gk as 

865 

(38) 9k = E 4(n)n k for k = 10(1)20, 
1 .5 

where the absolute value of the remainder 
a) 

-k 
0 co 

k 865- (k-1 ) 

(39) Z (n)n < , n < if x dx A= -1 
866 866 865 k 

The values of gk are given in the following Table 1. We also give in the table some 
simple inequalities for jg.j, which are used in the subsequent analysis. 

Analysis of the Prolongation Errors. The error (20), 

p = p(x, N) = -E > (n) li(x1"')/n, 
N+1 

can be estimated by use of the well-known expansion 

(40) li(x11) = Ei((log x)/n) = -y + log (- log x) + E (? kkj. 

Thus, 

(41) p = (-y + lo g lo g x) E u (n )/ + E E 
l 

! - 
I ' 

N+1 Y~~~i fl ~k=1 k n!=N+1 l 

Putting N = 154, we get 

co 

(42) p = -(-y + log log x)gl - 0.000641176 - E (log X)kgk+1/(k k!). 
k=1 

The error E(x, N), defined in (35), equals 

e(x, N)= (2 log log x - 0.976904)(-gl) - 0.000320588 

(43) o+ (- 1) M(log x)2m (2m) 
+~l (2m - 1 )7r 2m m 
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TABLE 1. gk = 155 (n)nk 

k gk 

1 -1.44447. 10-4 

2 -1.114766.10-6 
3 -3.479177*10-9 
4 3.135720.10-11 
5 7.197512. 10-13 
6 8.886832.10-15 
7 8.912980. 10-17 
8 7.99391*10-"' 
9 6.673. 10-21 

10 5.296.10-23 
11 4.0468. 10-25 
12 3.00369. 10-27 
13 2.17850. 10-29 
14 1.55080 10-31 
15 1.08722* 10-33 

16 7.52644. 10-36 

17 5.15555. 10-38 
18 3.50029* 10-40 

19 2.35868.10-42 

20 1.57927. 10-44 

k ? 20 <1541-k/(k 1) 
k ? 1 <7.7.154 - 

Thus, the total error, p + E, adds up to 

p + E = -gl(1.5 log log x + y - 0.976904) - 0.000961764 

- %g2 log X- g3(og X)2 - 94(10g X)3 

-E (log X)kg7+/( *k!) + E (1-I)r2- x 92inm 
k= 
> 11( + 

m=3 (2 m -l 

= 1.44447 10-4 (1.5 log log x - 0.399688) 

- 0.000961764 + 9.28972 10-7 log X 

+ 8.69794 10-10(log x)2 - 1.85820* 10-12(log X)3 + R. 

For all x between 2 and 2155, this expression is smaller than 

(45) 1.1-10 4 + JRI. 

R can be estimated using the first inequality in Table 1: 
OD 2 0 < 

: (109 X)'gk+l /(k * k! ) < E + )107.44k jgk+1I/(k * k! ) 
k=4 k=4 k=21 

(46) coo 

< 1.26. 106 + Z (107.44/154)k/(k2k!) < 1.3. 10-6. 
kA=21 
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Furthermore, 
co 

(_ (-)m-l(jog x)2m 1 (2m) 
co 

(6 107.44 
2- 

7.7 < 1..t 
(47 | E (2m - 1)52 g <Sr m_3k 154) 154 

Combining (45), (46), and (47), we get the following bound on the total error 

(48) IP + El < .I.10-4 + 0.032 10-4 < 1.2. 10-4, 

for all x between 2 and 2155. 
The Difference Between Rk(x) and 7r0(x). By comparing the computed values R*(x) 

with those of 7r0(x), we can, since we know the upper bound 1.2 1O-4 on the error 
in R*(x), tell how good an approximation Rk(x) is to 7r0(x). Since Rk(x) is very 
nearly = R*(x) for x < 21", the difference, Rk(x) - 7r0(x), can be calculated with 
good accuracy as R*(x) - 7r0(x). This difference is easy to see in Figs. 3a-d for 
certain intervals and certain values of k. 

We calculated R*(x) for k = 0, 1, 2, 3, 4, 5, 10, and 29 for x = 2(1)100, for 
x = p* 10a, where p = 1(1)9 and q = 2(1)5, and for x = 106. Furthermore, we made, 
as has already been mentioned, studies for x-values in some specially chosen intervals, 
namely for x = 190.5(1)230.5 and for x = 879.5(1)920.5. Because of the large volume 
of computation needed, we did not calculate more values and thus could make a 
systematic study of Rk(x) - 7r,(x) only up to x = 100 and in the special intervals 
(190.5, 230.5) and (879.5, 920.5). For x < 100, we give the results in Table 2, which 
contains those values of x for which IR*(x) - 7r,(x) takes a larger maximum value 
than for any t ? x. We also give the corresponding values of S = R*(x) - 7r0(x). 

Because we did not calculate the functions with a much smaller step in x, say 0.01, 
we obviously have not always "hit" on the true maximum values of IS!, but only 

TABLE 2. x and S = R*(x) - 7ro(x) when ISI has a large max. 

k=O k= 1 k=2 k=3 k=4 k=5 k= 10 

X S x S x S X S X S X S X S 

2 0.03 2 0.05 2 -0.09 2 0.11 2 -0.06 2 -0.02 2 -0.15 
4 0.07 4 -0.11 3 0.10 18 0.15 3 -0.11 3 -0.07 19 -0.17 
7 -0.14 5 0.12 10 0.14 19 0.22 4 0.16 5 -0.08 33 0.27 
8 -0.27 7 -0.16 18 0.22 24 -0.29 23 -0.17 9 0.14 48 -0.32 

10 0.43 14 -0.22 24 -0.43 38 -0.31 24 -0.31 15 -0.17 68 -0.56 
20 -0.55 16 0.23 58 0.47 40 0.39 40 0.43 21 0.19 
28 0.60 23 -0.26 62 -0.62 52 0.52 58 0.47 36 0.21 k = 29 
36 0.61 24 -0.63 62 -0.54 62 -0.62 38 -0.40 x S 
58 0.75 62 -0.66 74 -0.73 52 0.45 
74 -0.76 96 0.68 62 -0.51 2 0.21 
96 0.82 31 -0.23 

78 0.25 

96 0.29 
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on neighbouring values to the extreme values. This explains why in Table 2 R*(x) 
seems to be an equally good approximation as R*(x) to ir0(x), or why R*(x) even 
seems to be a little bit worse than R*(x). Also, for a fixed x, we occasionally may 
get worse approximations, when we raise k, namely if the error R*.(x) - 71r(x) happens 
to be exactly equal to 0 for some small value of j. However, the trend is towards 
smaller deviations "in mean" between R*(x) and 7r0(x) as k grows. This is well sup- 
ported by the small values obtained for k = 29. 

For x in the intervals (190.5, 230.5) and (879.5, 920.5), we give max jRk(x) - 7r0(x)I 
in Table 3. 

The trend towards smaller deviations with growing k is the same as in Table 2. 
From the Tables 2 and 3 we infer that R,9(x) approximates -r0(x) with an error 

of at most a few units for x ? 1000. 
Some Earlier Computations. On checking the program-routines for li(x) and R(x), 

the authors calculated the values of these functions for x = p 1O', where p = 10(1)99 
and q = 0(1)10. Some of these values are found in [5]-[8]. On this occasion some 
minor errors in the previous work were detected. First, we note that different authors 
define li(x) and R(x) in a slightly different way. Thus, 

li(x) R(x) 
in [6] equals ours- I 

[ours in all 
computations 

in [5], [7], and [8] equals ours 
ours-li(2) in 
defining relation 

Taking these differences into account (li(2) 1.045), we find that in [5] 
R(x) was given 1 unit too high for x. 106- 0.75, 1, and 2.4, 
R(x) was given 1 unit too low for x- 10-6 4.7, and that 
li(x) was given 1 unit too high for x. 106- 0.65, 1.2, 4.4, 8.2, and 8.8. 
The values for x- 106 = 1.05(0.1)9.95 were not checked by us. Curiously enough, 

the values of R(x) for x - I06 = 1, 2.4, and 4.7, are correctly given in [6], which is 
published much earlier than [5]. 

In [7], the values of R(x) are given 1 unit too low for 

x 10-6 = 20, 25, 33, 40, and 90. 

R(37- 108) is given 4 units too low. li(108) is given 1 unit too high, and li(9 1O') is 
457 units too low. 

In [8], finally, where we have recalculated all given values of li(x) and R(x), we 
found only one minor mistake. R(83- 107) is given as 42608308, where we found 
42608307 499944. 

TABLE 3. max .G jRk(x) - 7rO(x) 

I k=0 k= 1 k=2 k=3 k=4 k=5 k=10 k=29 

(190.5, 230.5) 1.58 1.38 1.21 1.32 1.21 1.17 0.89 0.75 
(879.5, 920.5) 1.91 2.50 2.02 2.05 1.90 1.79 1.34 1.19 
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